

Disruptor[™] 5293 PAC-S Filtration Media

June 2022

More about the technology and its performance.

Document content Guide

What is Disruptor[™] 5293 PAC-S Technology? 1.

a.	What makes the Disruptor™ Filter Different?	Pg 3
b.	Additional benefits	Pg 3
С.	How does it work?	Pg 3
d.	Disruptor™ under the microscope	Pg 4
e.	Disruptor™ technology compared	Pg 4
f.	Certification	Pg 5

Disruptor Media Test Reports 2.

a.	Bacteria, Virus and Cysts	Pg 6-7
b.	E. Coli	Pg 8
с.	Endotoxins	Pg 9
d.	Chlorine	Pg 10
e.	Lead	Pg 11
f.	Emerging Contaminants/Trace Pharmaceuticals	Pg 12-14

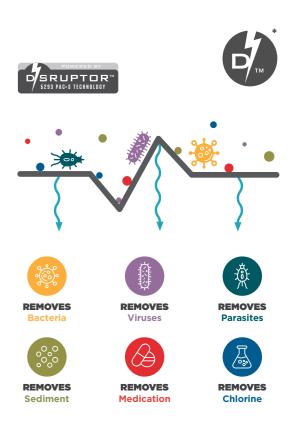
What is **Disruptor[™] 5293 PAC-S?**

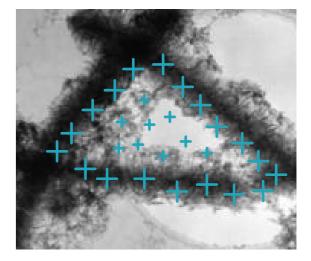
Disruptor[™] is a breakthrough technology for the more demanding water purification needs that is not directly comparable to any other water purification media currently on the market.

What makes the Disruptor[™] filter different?

- Electroadsorption traps and removes viruses, bacteria and various other contaminants
- Anti-microbial silver disinfects
- Powdered Activated Carbon reduces odours and improves the taste

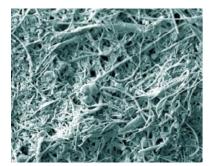
Additional benefits:

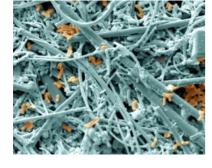

- Energy savings and sustainability. It offers very high flow rates at lower pressure drops compared to competing technologies with similar biological removal performance.
- Maintains water integrity. It effectively removes the pathogens and other contaminants whilst maintaining the minerals for taste.
- No wastage whilst filtering. . As part of the filtration process, no water is wasted when using the Disruptor filter.

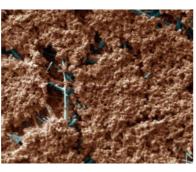

How does it work?

A positive electrical charge is created once water flows through the filter which attracts the negative charge present on most submicron contaminants. Due to the structure of the media, this charge causes the fibers to further overlap into the fibre pore structure.

The Disruptor™ is an electro-positive, wet-laid nonwoven media with a pore size of 1.2 to 1.5 microns. What makes this media unlike any other on the market is that despite the fact that it captures very small diameter substances and pathogens, it also remove larger particles mechanically.







Disruptor™ under the microscope

• The Disruptor[™] technology removes hundreds of billions of pathogens per m² at 99.9999% efficiency:

1. No filtration/upstream side

2.1 hour of filtration/upstream side

3. 8 hours of filtration/upstream side

3-in1 Disruptor™ 5293 PAC-S Technology Compared

Major contaminants	Disruptor™ 5293 PAC-S	Reverse Osmosis	Nano- filtration	Ultra- filtration	Micro- filtration	Ultra Violet	Carbon Block	Particulate Cartridges
Dissolved solids (minerals)		Ø						
Chlorine	v	Ø					Ø	
Particulates	v	Ø	Ø	Ø	Ø		Ø	Ø
Endotoxins	v	Ø	Ø	Ø	Ø			Ø
Viruses (including E. coli)	I	Ø	Ø					
Bacteria	I	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Cysts & parasites	I	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Polysaccharides (TEP)		Ø	Ø	Ø	Ø			
Colloids	I	Ø	Ø	Ø				
Trace pharmaceuticals		Ø						
Chemicals		Ø					Ø	
Some heavy metals (lead, copper & iron)	v							
VOC (volatile organic compounds)	 Image: A start of the start of						Ø	

Did you know?

The initial development stages of the Disruptor technology is linked to NASA. In 2000 a small business innovation research (SBIR) contract was awarded by NASA's Johnson Space Center. In 2002 it started out as a Disruptor based NanoCeram filter which was introduced into Space Foundation's Space Technology Hall of Fame in 2005, and in 2006 it was exclusively licensed to Ahlstrom Munksjö.

Certification

• ISO 9001, 14001, 45001 and Forestry for: Total production, management, environment, quality and safety systems.

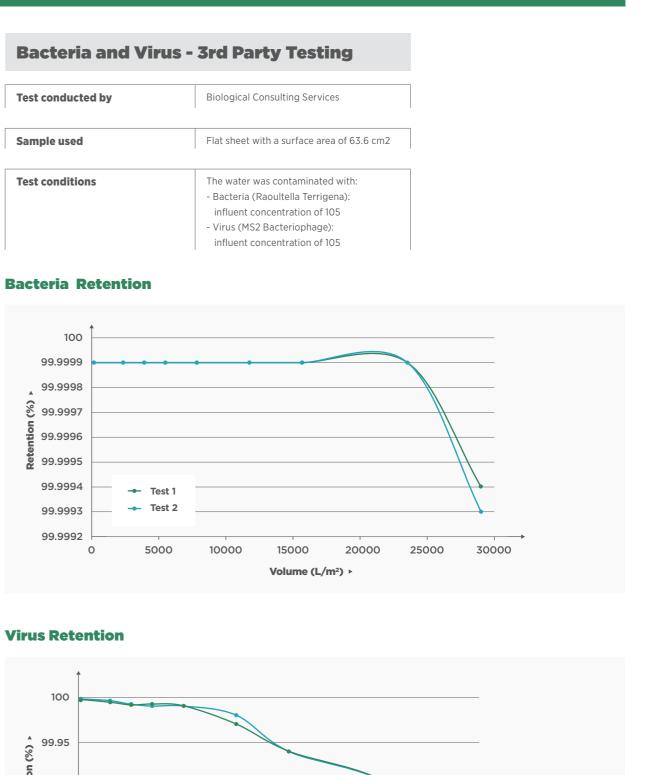
• NSF 42

NSF follows the American National Standard Institute (ANSI) standards development process. NSF Standard 42 is a certification that is concerned with improving drinking water by reducing specific aesthetic or nonhealth-related contaminants that may be in the water. This certification applies to drinking water filtration.

Product listing per NSF 42

COMPON	ENTS :	Filter	Media	11		
Grade	4616		Grade	5281	Grade	52
Grade	5283N		Grade	5284	Grade	52
Grade	5293		Grade	5294	Grade	52
	F 2 0 0					

DISRUPTOR[™] MEDIA TEST REPORTS


Bacteria, Virus and Cysts

Test conducted by	Ahlstrom Munksjö*
Test conditions	Water contaminated with: - Bacteria (Raoultella Terrigena) influent* concentration of 10 ⁵ or 10 ⁶ per ml - Virus (MS2 Bacteriophage) influent concentration of 10 ⁵ or 10 ⁶ per ml - Cyst (3 micron bead surrogate) influent concentration of 10 ⁵ or 10 ⁶ per ml

Virus vs Bacteria

Viruses are the smallest form of micro-organisms capable of causing disease, particularly those of a fecal origin infectious to humans by waterborne transmission. Bacteria are typically single-celled microorganisms that can also cause health problems in humans, animals or plants.

Test conducted by	Biological Consulting Service
Sample used	Flat sheet with a surface are
Test conditions	The water was contaminated - Bacteria (Raoultella Terrige influent concentration of 10 - Virus (MS2 Bacteriophage) influent concentration of 10

Example of COA* for Disruptor 5293

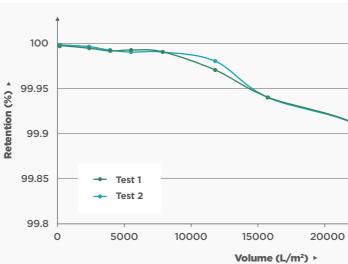
Quality	Control R	eport	by Re	eel				Page	2 0	9/17/2018	13:27					
Warehouse	MT. HOLLY SF	RINGS		L	oad Nr.	2922	23 L	oad Pos.	1				Ahlstro	m Run Nr.		
Order Nr.	2018251470	0	rder Lot	3 Ord	er Pos.	1 Cust.	Order	45002223	354		Date	of Man	ufacture 0	9/14/2018 - 09/	16/2018	
Customer	AH22221948	K	EMFLO (N	ANJING) ENVIRC	NMENTA	L Gr	ade M	HLA5293	P	roduct	5293	952.5 MM	X 400 METERS		
C.ProdName					ProdCode					Width	952.5	mm	Weight	318.6 g/m2	Color	
THIS GRADE	HAS BEEN TES															
	BACTERIA BO					WEIGHT	THICK		BOND F		THICK					
	PERCENT GRA	MS/IN	OSY	PPM P	ERCENT	GSM N	IICRONS F	PERCENT	GRAMS/IN	CFM	MIL					
203354/006	99.9999	82	9.48	0.23	99.9993	321.3	983.3	99.9996	84	5.6	38.7					
203354/007	99.9999	99	9.29	0.23	99.9993	315.0	1006.7	99.9974	94	5.5	39.6					
203354/008	99.9999	82	9.43	0.17	99.9993	319.7	986.7	99.9996	99	5.4	38.8					
203354/009	99.9999	95	9.35	0.17	99.9993	317.0	1006.7	99.9999	84	5.6	39.6					
203354/010	99.9999	94	9.44	0.12	99.9993	320.0	1006.7	99.9999	75	5.5	39.6					
203354/011	99.9999	93	9.51	0.12	99.9994	322.3	1010.0	99.9997	85	5.3	39.8					
203354/012	99.9999	110	9.52	0.12	99.9994	322.7	996.7	99.9959	97	5.3	39.2	8				
			.1.													
🔆 Bac	teria Remov	al %		Cyst	Remov	al %	₿ v	irus Re	moval %							
Tambours: Rol	s															
203350/001: 532	2000034940	20	03350/003: {	5320000349	942	203	350/005: 53	2000034944	1	203350/0	007: 532000034	946	2	03350/009: 532000	034948	
203350/011-533	000034050	21	3350/013-	5320000340	52	203	350/015: 53	200003495/	1	203350//	17. 532000034	956	2	03350/019 532000	03/058	

203350/001: 532000034940	203350/003: 532000034942	203350/005: 532000034944	203350/007: 532000034946	203350/009: 532000034948
203350/011: 532000034950	203350/013: 532000034952	203350/015: 532000034954	203350/017: 532000034956	203350/019: 532000034958
203350/021: 532000034960	203350/023: 532000034962	203354/002: 532000034965	203354/003: 532000034966	203354/005: 532000034968
203354/007: 532000034970	203354/009: 532000034972	203354/011: 532000034974		

THIS COMPONENT IS CERTIFIED FOR MATERIAL SAFETY

REFER TO WQA'S WEBSITE AT WWW.WQA.ORG FOR SPECIFIC FIELD USE INSTRUCTIONS

THIS IS TO CERTIFY THAT THE MATERIAL IN THIS SHIPMENT MEETS THE AHLSTROM SPECIFICATION FOR THIS PRODUCT


Alipin 9-17-2018 DATE

SIGNATURE Ahlstrom Filtration, LLC (Advanced Filtration) Maintains the Following Certifications: ISO 9001 and ISO 14001 (Mt Holly Site Only)

Glossary

- * **COA:** Certificate of Analysis.
- * Influent: Water that flows in, usually the raw, untreated water.

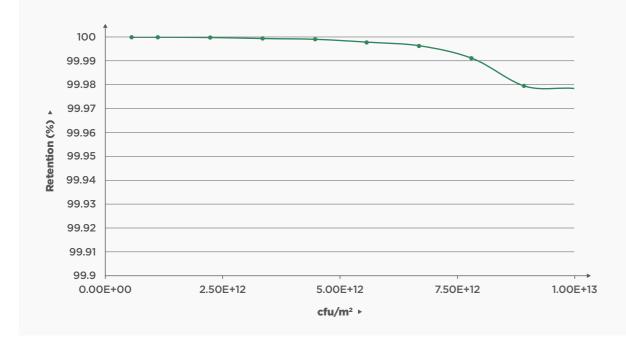
* Ahlstrom Munksjö: A multi-billion dollar, globally recognised company that is currently one of the world's leading players in sustainable and innovative fiber solutions.

30000

25000

E. Coli Capacity

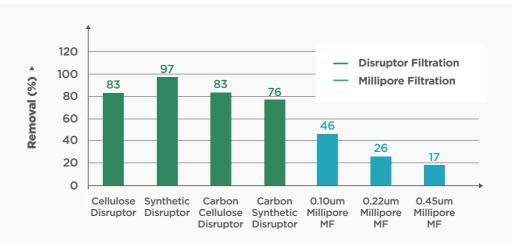
Test conducted by	Ahlstrom Munksjö
Flow rate	40 litres/m2/min
Test conditions	 Water: Ringer Bacteria - E. Coli Internal Protocol used: TM 140 Temperature 22°C ± 1°C pH 7.75 ± 0.25 Soaking: few seconds with DI water* Analysis: ATP metry*


What is E. Coli?

A bacteria that is commonly found in the lower intestine of warm-blooded organisms. Most strains are harmless, but some can cause serious food poisoning and may lead to a life-threatening disease especially in cases of young children and older people.

Endotoxin or Lipopolysaccharide (LPS)

Case study conducted by	Ahlstrom Munksjö
Findings	By the end of the study discs had been challen 10 ⁶ EU. The Disruptor ra a higher percentage of Millipore MF filters.
	Despite the MF filters h pore size, the Disrupto more endotoxins. This charge is more effectiv endotoxins than the po


E. Coli Retention

Glossary

- * ATP Metry: A molecular biology technique, based on the principle of bioluminescence, which allows measuring a quantity of ATP in a sample.
- * **DI water:** De-ionized water.
- * cfu: A colony-forming unit (CFU or cfu) is a measure of viable bacterial or fungal cells. CFU measures only viable cells. For convenience the results are given as CFU/ml (colony-forming units per milliliter) for liquids, and CFU/g (colony-forming units per gram) for solids.

Endotoxin Retention - Case Study

Endotoxin Retention - 3rd Party Test Results

Client	HEATHER MOWERS
	AHLSTROM FILTRATION LLC
	122 WEST BUTLER ST
	MOUNT HOLLY SPRINGS PA 17065

Date Received: 11-Jan-2008 Test/Method: BET Kinetic- Medical Devices, USP <85> Specification: Sample Endotoxin Less Than Limit LAL Kinetic Method: Chromoger Endotoxin Limit: 0.50 EU/mL Extraction Method: Immersion mple De Sample No. 09508001586* Heat Seal 9530 75 mL

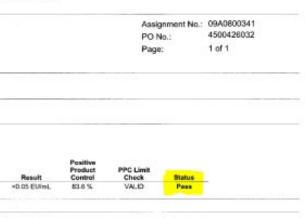
Evaluation

This sample passes the test for bacterial endotoxins at 1/10 of the client specified endotoxin limit. Validation (Inhibition/Enhancement Testing) declined by client. *09508001586

dy each of the nged with 3.85 x range removed f endotoxin than

having a smaller or removed shows that the ive in retaining oore size.

What are Endotoxins?


They are large molecules found in the outer membrane of gram-negative bacteria that can cause severe immune responses in people such as:

- * Elevated temperature
- * Increased respiration
- * Decreased blood pressure
- * Endotoxin shocks (this can be fatal)

Note: the case study was done with lower grade disruptor medias than the 5293 PAC-S used in JoJo's Filtration range, but has been included to showcase the performance capabilities of the filter media.

Northview Laboratories

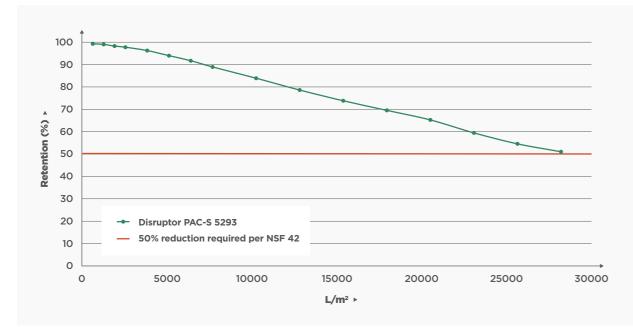
CERTIFICATE OF ANALYSIS

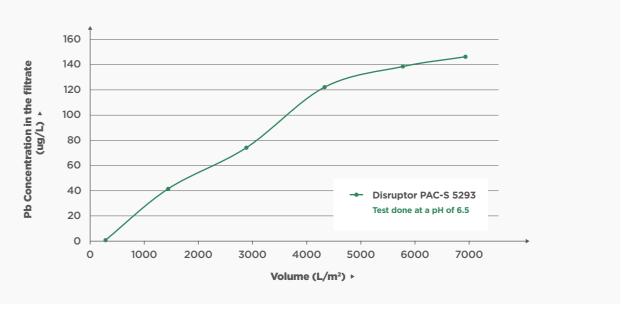
Chlorine

Test conducted by	Ahlstrom Munksjö
Sample used	Flat sheet with a surface area of 3.9 cm ²
Flow rate	15.9 ml/min
Test conditions	Tap water from Pont Eveque-PEV: - Temperature 20 °C - TDS* 310 mg/L - pH 7.4 - Chlorine initial concentration of 2

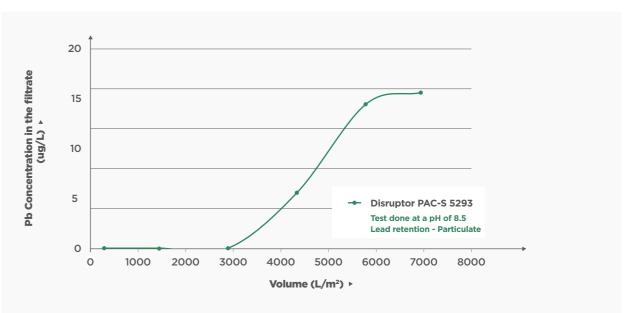
2 ppm

NSF Requirements


- The NSF 42 standard requires
 50% reduction for chlorine
- The Disruptor[™] 5293 PAC-S is above 50% retention until 28 000 L/m


Lead - 3rd Party Testing

Test conducted by	Aquadiagnostics (recog Quality Association, US/
Sample used	Flat sheet with a surface cm ²
Pressure/Flow rate	Pressure maintained at (measurement of the flow


Lead Retention - Dissolved

Chlorine Retention

Lead Retention - Particulate

Glossary

- * TDS: Stands for total dissolved solids, and represents the total concentration of dissolved substances in water.
- * PPM: Parts per million or ppm means out of a million. Usually describes the concentration of something in water or soil.

One ppm is equivalent to 1 milligram of something per liter of water (mg/l) or 1 milligram of something per kilogram soil (mg/kg).

ice area of 17.3

at 0.65 bar and low rate variation

Lead Health Effects

The widespread use of lead has resulted in extensive environmental contamination. At high levels of exposure (or long term exposure), it attacks the brain and central nervous system which can lead to a series of illnesses and disorders.

Emerging Contaminants* - 3rd Party Tests

Test conducted by	NSF International Laboratories
Standard conducted under	NSF 401
Test conditions	Testing based on a life estimation of 1000 litres/ft2* corresponding to 100% in the tables

Prescription Drugs

Phenytoin: a anti-epileptic drug

Atenolol: a beta blocker drug

Carbamazepine: an anticonvulsant and mood-stabilizing drug Trimethoprim: an antibiotic medication Estrone: a prescription birth control drug

	Sample Point				
Analyte	50%	100%	150%	180%	200%
Phenytoin	Yes	Yes	Yes	Yes	Yes
Atenolol	Yes	No	No	No	No
Carbamazepine	Yes	Yes	No	No	No
Trimethoprim	Yes	Yes	Yes	Yes	No
Estrone	Yes	Yes	Yes	Yes	Yes

Glossary

* ft2: Square feet

- * Analyte: A substance whose chemical constituents are being identified and measured.
- * Emerging contaminants: Contaminants such as pesticides, herbicides, prescription drugs and detergents.

Chemical Compounds

TCEP: a chemical compound used as a flame retardant, plasticizer and viscosity regulator in various types of polymers including polyurethanes, polyester resins and polyacrylates

TCPP: a chemical compound used as a flame retardant

BPA (Bisphenol A): a chemical compound used as a plasticizer

Nonyl phenol: a collection of compounds often used as a precursor to commercial detergent

	Sample Point				
Analyte	50%	100%	150%	180%	200%
ТСЕР	Yes	Yes	No	No	No
ТСРР	Yes	Yes	Yes	Yes	Yes
Bisphenol A	Yes	Yes	Yes	Yes	Yes
Nonyl phenol	Yes	Yes	Yes	Yes	Yes

NSF 401 Certification

The NSF 401 filter certification is for "incidental contaminants and emerging compounds." This means that the NSF Public Safety and Health Organization has verified that the Disruptor™ filter meets their high standards for emerging compound and incidental contaminant reduction through a variety of tests done by experts from NSF.

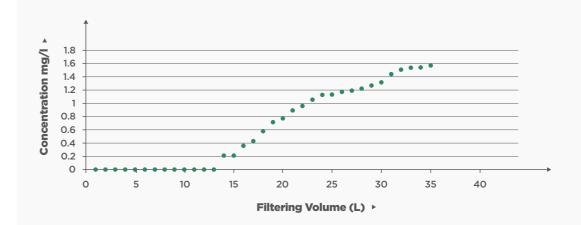
Over-the-counter Medications

Ibuprofen: an over-the-counter pain reliever and anti-inflammatory medication

Naproxen: an over-the-counter pain reliever and anti-inflammatory medication

DEET (N,N-Diethyl-meta-toluamide): a pesticide and common active ingredient in insect repellents

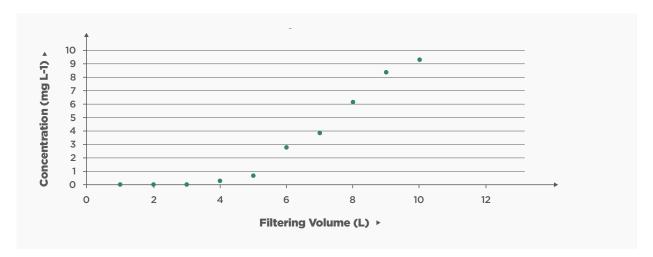
Metolachlor: an organic compound that is widely used as an herbicide **Linuron:** a herbicide often used in the control of grasses and weeds


	Sample Point				
Analyte	50 %	100%	150%	180%	200%
Ibuprofen	Yes	Yes	No	No	No
Naproxen	Yes	Yes	Yes	Yes	Yes
DEET	Yes	No	No	No	No
Metolachlor	Yes	Yes	Yes	No	No
Linuron	Yes	Yes	Yes	Yes	Yes

Other Trace Pharmaceutical/Micro Contaminant Reduction Results

Penicillin G Removal

Penicillin G was used for testing as a representative antibiotic. It was first studied using a challenge solution of 2 mg/l. This graph shows that the entire antibiotic was removed from 13 liters of water. At more typical concentration in the range of 2 micrograms per liter, a square foot of Disruptor could theoretically process more than 900,000 liters of water if it were free of other contaminants.


Micro Contaminants

Various micro contaminants are now being detected in many waste water and in some potable water sources.

Although the dangers these contaminants present to humans and the environment are not well understood, reduction or removal of these compounds is a concern to many health authorities and agencies.

Flumequine Removal

Flumequine is a chemotherapeutic antibiotic implicated in tendon rupture, DNA damage and anaphylactic shock. It has been taken off the market but is representative of the flumequine drug class. The data shows complete removal from 3 liters of water with a concentration of 10 mg/l. At more typical concentration in the range of 2 micrograms per liter, a square foot of Disruptor could theoretically process more than 1 million liters of water if it were free of other contaminants.

PCB Removal

Polychlorinated biphenyls (PCBs) are man made organic chemicals that are known for their toxic and carcinogenic effects. Independent testing has shown Disruptor to be effective in removing PCBs from water as indicated in the above chart. **Note:** the tests shown below were done with lower grade Disruptor medias than the 5293 PAC-S used in JoJo's Filtration range, but has been included to showcase the performance capabilities of the filter media.

Congener Group	ng/L influent	5284 ng/L effluent	5283 ng/L effluent
Total monochloro biphenyls	158	2.36	0.377
Total dichloro biphenyls	629	0.85	nd
Total trichloro biphenyls	1260	nd	nd
Total tetrachloro biphenyls	4490	nd	nd
Total pentachloro biphenyls	4870	nd	nd
Total hezachloro biphenyls	4460	nd	nd
Total heptachloro biphenyls	2460	nd	nd
Total octachloro biphenyls	1810	nd	nd
Total nonachloro biphenyls	473	nd	nd
Decachloro biphenyls	187	nd	nd

Glossary

- * Influent: Water that flows in, usually the raw, untreated water.
- * Effluent: Water that flows out, in this context the water once it has been filtered.